Abstract

The shape of breakthrough curves and elution profiles depends strongly on the course of the specific equilibrium functions characterizing the chromatographic system. For a highly efficient system the equilibrium theory provides a methodology how to predict the band profiles. The concept is frequently applied to analyze single component systems characterized by isotherms possessing simple shapes (Langmuir or anti-Langmuir behaviour). However, adsorption isotherms often possess more complicated shapes and have inflection points in their courses. This leads to the development of composite concentration waves and results in complex shapes of breakthrough curves and elution profiles. In this paper, the equilibrium theory is used to predict breakthrough curves for a chromatographic system characterized by an adsorption isotherm with two inflection points. The results obtained are validated by comparing with numerical solutions of the equilibrium dispersive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.