Abstract

Excessive oxidative stress in cancer cells can induce cancer cell death. Anticancer activity and drug resistance of chemotherapy are closely related to the redox state of tumor cells. Herein, five lipophilic Pt(IV) prodrugs were synthesized on the basis of the most widely used anticancer drug cisplatin, whose anticancer efficacy and drug resistance are closely related to the intracellular redox state. Subsequently, a series of cisplatin-sensitive and drug-resistant cell lines as well as three patient-derived primary ovarian cancer cells have been selected to screen those prodrugs. To verify if the disruption of redox balance can be combined with these Pt(IV) prodrugs, we then synthesized a polymer with a diselenium bond in the main chain for encapsulating the most effective prodrug to form nanoparticles (NP(Se)s). NP(Se)s can efficiently break the redox balance via simultaneously depleting GSH and augmenting ROS, thereby achieving a synergistic effect with cisplatin. In addition, genome-wide analysis via RNA-seq was employed to provide a comprehensive understanding of the changes in transcriptome and the alterations in redox-related pathways in cells treated with NP(Se)s and cisplatin. Thereafter, patient-derived xenograft models of hepatic carcinoma (PDXHCC) and multidrug-resistant lung cancer (PDXMDR) were established to evaluate the therapeutic effect of NP(Se)s, and a significant antitumor effect was achieved on both models with NP(Se)s. Overall, this study provides a promising strategy to break the redox balance for maximizing the efficacy of platinum-based cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.