Abstract

In the osteoporotic microenvironment, the acidic microenvironment generated by excessive osteoclasts not only causes irreversible bone mineral dissolution, but also promotes reactive oxygen species (ROS) production to induce osteoblast senescence and excessive receptor activator of nuclear factor kappa-B ligand (RANKL) production, which help to generate more osteoclasts. Hence, targeting the acidic microenvironment and RANKL production may break this vicious cycle to rescue osteoporosis. To achieve this, an acid-responsive and neutralizing system with high in vivo gene editing capacity is developed by loading sodium bicarbonate (NaHCO3 ) and RANKL-CRISPR/Cas9(RC) plasmid in a metal-organic framework. This results showed ZIF8-NaHCO3 @Cas9 (ZNC) effective neutralized acidic microenvironment and inhibited ROS production . Surprisingly, nanoparticles loaded with NaHCO3 and plasmids show higher transfection efficiency in the acidic environments as compared to the ones loaded with plasmid only. Finally, micro-CT proves complete reversal of bone volume in ovariectomized mice after ZNC injection into the bone remodeling site. Overall, the newly developed nanoparticles show strong effect in neutralizing the acidic microenvironment to achieve bone protection through promoting osteogenesis and inhibiting osteolysis in a bidirectional manner. This study provides new insights into the treatment of osteoporosis for biomedical and clinical therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call