Abstract

A clear-cut signature of a wave-breaking event is irreversible modification of the mean flow. In this paper, we provide examples of different breaking mechanisms and show that breaking scenario of equatorial waves in the beta-plane shallow water model is determined by the degree of balance between the zonal component of the Coriolis force and the pressure gradient. Our analysis is based on a specially designed numerical method which guarantees two essential conditions to simulate nonlinear equatorial waves: (i) the scheme converges toward weak solutions including shocks and (ii) preserves the steadiness of balanced stationary solutions. This allows for accurate diagnostics of Lagrangian invariants of motion such as passive tracer density or potential vorticity. For unbalanced waves, the lack of balance leads to shock formation in finite time. In shock fronts, the variation of the dissipation rate induces a nonadvective potential vorticity flux and violates the local potential vorticity conservation valid for smooth solutions. This dissipative breaking mechanism is generic for unbalanced waves and is associated with enhanced mixing. For long, balanced (Rossby) waves, breaking consists in appearance of recirculation regions. It results in the formation of propagating patterns, the equatorial modons, which trap fluid particles. Such breaking occurs during the propagation of Rossby wave packets with positive geopotential anomaly and is strengthened by decreasing fluid depth. The modons are robust and collide quasielastically with Kelvin waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call