Abstract

The creep behaviour of Al-10 at% Zn at 573 K is divisible into three deformation regions; low stress region, intermediate stress region and high stress region. The creep characteristics of the low stress region and intermediate stress region are consistent with dislocation climb and viscous glide, respectively. In the high stress region, the stress exponent,n increases with stress, the activation energy is higher than those observed in the other two regions, the activation area is slightly decreasing with stress and the internal stress is almost negligible. Present analysis shows that these characteristics are consistent with the thermally-activated glide motion of dislocations as a rate controlling mechanism at high stresses.[/p]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.