Abstract

Abstract To assess the contribution of wind drag and Stokes drift on the near-surface circulation, a methodology to isolate the geostrophic surface current from high-frequency radar data is developed. The methodology performs a joint analysis utilizing wind field and in situ surface currents along with an unsupervised neuronal network. The isolation method seems robust in the light of comparisons with satellite altimeter data, presenting a similar time variability and providing more spatial detail of the currents in the coastal region. Results show that the wind-induced current is around 2.1% the wind speed and deflected from the wind direction in the range [18°, 23°], whereas classical literature suggests higher values. The wave-induced currents can represent more than 13% of the ageostrophic current component as function of the wind speed, suggesting that the Stokes drift needs to be analyzed as an independent term when studying surface sea currents in the coastal zones. The methodology and results presented here could be extended worldwide, as complementary information to improve satellite-derived surface currents in the coastal regions by including the local physical processes recorded by high-frequency radar systems. The assessment of the wave and wind-induced currents have important applications on Lagrangian transport studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.