Abstract
We are reporting the observation of the breakdown of electrons' degeneracy and emergence of classical statistics in the simplest element: metallic deuterium. We have studied the optical reflectance, shock velocity, and temperature of dynamically compressed liquid deuterium up to its Fermi temperature T_{F}. Above the insulator-metal transition, the optical reflectance shows the distinctive temperature-independent resistivity saturation, which is prescribed by Mott's minimum metallic limit, in agreement with previous experiments. At T>0.4 T_{F}, however, the reflectance of metallic deuterium starts to rise with a temperature-dependent slope, consistent with the breakdown of the Fermi surface. The experimentally inferred electron-ion collisional time in this region exhibits the characteristic temperature dependence expected for a classical Landau-Spitzer plasma. Our observation of electron degeneracy lifting extends studies of degeneracy to new fermionic species-electron Fermi systems-and offers an invaluable benchmark for quantum statistical models of Coulomb systems over a wide range of temperatures relevant to dense astrophysical objects and ignition physics.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have