Abstract

Electrochemical conversion of CO2 into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO2 reduction reaction (eCO2RR) due to their low cost and high abundance, but suffer from low selectivity of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCO2RR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm−2 at −0.94 V vs. reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H2. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO2 to formate over Cu-based catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.