Abstract
Bromodomain-containing protein 4 (BRD4) is an intracellular protein that regulates expression of various cellular functions. This study investigated whether BRD4 inhibition can alter the immunomodulatory and antitumor effects of radiation therapy (RT). A murine breast cancer cell line was implanted into BALB/c mice. The dual-tumor model was used to evaluate the abscopal effects of RT. A total of 24 Gy was delivered and BRD4 inhibitor was injected intravenously. Tumor size was measured, and in vivo imaging was performed to evaluate tumor growth. Flow cytometry and immunohistochemistry were performed to examine immunologic changes upon treatment. The combination of BRD4 inhibitor and RT significantly suppressed tumor growth compared to RT alone. BRD4 inhibitor reduced the size of the unirradiated tumor, indicating that it may induce systemic immune responses. The expression of HIF-1α and PD-L1 in the tumor was significantly downregulated by the BRD4 inhibitor. The proportion of M1 tumor-associated macrophages (TAMs) increased, and the proportion of M2 TAMs decreased upon BRD4 inhibition. BRD4 inhibitor expanded CD4+ and CD8+ T cell populations in the tumor microenvironment. Additionally, splenic monocytic myeloid derived suppressor cells, which were increased by RT, were reduced upon the addition of BRD4 inhibitor. Therefore, the addition of BRD4 inhibitor significantly enhanced the systemic antitumor responses of local RT.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have