Abstract

Abstract. This work presents ongoing efforts and preliminary results for building a dataset that represents the first and most comprehensive bio-optical information available on Brazilian inland waters to support the development of remote sensing algorithms for monitoring aquatic systems. From 2012 to 2014 optical and limnological data was gathered along thirteen field campaigns in five Brazilian reservoirs, in an irrigation and domestic water supply reservoir located in semi-arid northeast of the country and in Amazonian floodplain lakes, thus covering the diversity of Brazilian inland waters. At each site 20 stations, on average, were sampled to acquire profiles of the following optical variables: absorption, attenuation, scattering, and backscattering coefficients and radiances/irradiances spectra above and in-water. Alongside these measurements, water samples were collected for determining concentrations of chlorophyll-a (Chl-a), Total Suspended Solid (TSS), Total Dissolved Carbon (TDC) and its organic/inorganic fractions, CDOM absorption, phytoplankton specific absorption [aph*] and Non-Algal Particles absorption [aNAP*]. Preliminary results show that Chl-a concentrations ranged from 0.6 to 243μg/L in reservoirs and 0.90 to 92μg/L in Amazonian lakes, while TSS concentrations ranged from 0.3 to 31mg/L in reservoirs and 0.5 to 162mg/L in Amazonian lakes. In situ beam attenuation coefficients ranged from 1.4 to 16m-1 in reservoirs and 12.5 to 38m-1 in Amazonian lakes, while diffuse attenuation coefficients of downwelling irradiance over the Photosynthetically Active Radiation (Kd(PAR)) extended from 0.35 to 4.5m-1 in reservoirs and 1.69 to 13.30m-1 in Amazonian lakes. Our research group is building this dataset anticipating future demands for algorithm validation regarding OLI/Landsat8 data and ESA Sentinel missions to be launched as of 2015.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.