Abstract
We analyze the Brauer-Manin obstruction to rational points on the K3 surfaces over $\mathbb{Q}$ given by double covers of $\mathbb{P}^2$ ramified over a diagonal sextic. After finding an explicit set of generators for the geometric Picard group of such a surface, we find two types of infinite families of counterexamples to the Hasse principle explained by the algebraic Brauer-Manin obstruction. The first type of obstruction comes from a quaternion algebra, and the second type comes from a 3-torsion element of the Brauer group, which gives an affirmative answer to a question asked by Ieronymou and Skorobogatov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.