Abstract

This study was conducted to investigate the effects of some plant growth-promoting rhizobacteria (PGPR) on the arbuscular mycorrhizal fungi (AMF) formation on [Brassica oleracea (cauliflower), Spinacia oleracea (spinach) ,and Urtica urens (stinging nettle)] belonging to Brassicaceae, Chenopodiaceae and Urticaceae families, which are known to have a negative influence on the symbiotic life formation with AMF. Two PGPR isolates that contributed to the plant's growth and served as a “mycorrhizal helper” in various hosts were predetermined at the initial stage; then they were applied to three plant species with AMF species [Gigaspora margarita and commercial AMF (ERS)]. The obtained results revealed that combined AMF x PGPR treatments improved the growth and morphological development parameters of cauliflower, spinach, and nettle plants. PGPR bacteria had different effects on AMF root colonization depending on the plant species. The highest root colonization rate was achieved in spinach plants with the commercial AMF treatments. Commercial AMF isolate, alone or in combination with PGPR strains, was also found to increase AMF spore density and mycorrhizal dependency in cauliflower and spinach plants. There was no significant difference in total phosphorus content in cauliflower and nettle compared to the control group, and only one application group (G. margarita x PGPR) in spinach plants had an increase in phosphorus content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.