Abstract
Brassica napus plants were subjected to an oxidative stress by incubating them with 100 μM CuSO 4 for different times. The early response to copper stress was evaluated studying changes at both root and leaf level in the putative lipid and antioxidative signals diacylglicerol (DAG), phosphatidic acid (PA) and glutathione, in order to achieve elucidation on how these two kind of signals are related to each other. Activation of phospholipases C (PLC) and D (PLD) was studied in roots and leaves whereas increases in the levels of total and reduced glutathione (GSH) and changes in its redox status were evaluated in roots, leaves and chloroplast stroma. PLC and PLD were measured by studying the production of DAG, PA and phosphatidylbutanol (PtdButOH). PA, PtdButOH as well as DAG increased in roots already after 1 min of the treatment whereas in leaves, where no translocation of the metal occurred, any increase in PA and DAG was observed and no PtdButOH was formed. Roots were affected by oxidative stress showing decreases in glutathione reductase (GR), in total glutathione (GSH + GSSG) and GSH, and increases in oxidised glutathione (GSSG). In leaves, GR was induced during the whole stress period and both GSH + GSSG and GSH showed a peak at 5 min of the treatment. In the stroma, the maximum presence in GSH + GSSG and GSH occurred with a time shift of 25 min compared with total leaf extract.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have