Abstract
In recent years, the importance of social media data has increased with the developments in information and communication technologies, and data volume, velocity, variety, veracity, and value have been affected by these developments. Because of the popularity of social networks, the analysis of social media data has also become an important issue for large companies whose brand identity is very crucial. User comments, shares, and explanations in social networks can be used to obtain information about the brand and product. Besides, deep learning techniques, which have become popular recently and provide high accuracy, can be employed for big data analysis in social networks. The number of studies examining the brand image in social networks is quite limited. In this context, we developed a model that performs brand analysis using deep learning techniques in social networks by considering the Starbucks Coffee Company, one of the world's largest coffeehouse chains. We trained our model with Faster Region-based Convolutional Neural Network (Faster R-CNN), Single Shot Multibox Detector (SSD), Mask R-CNN, and You Only Look Once (YOLO) algorithms. We then tested the model on data from Instagram and compared the results. In the light of our results, we have shown that analyzes using deep learning techniques in social networks can significantly affect the image of companies and their brands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.