Abstract

Tilia amurensis Rupr. and Tilia mandshurica Rupr. and Maxim. are two essential commercial species, though there is surprisingly little concern about whether their branches can be used in the current situation of a wood shortage in China. In this study, tissue proportions and fiber morphology, physical and mechanical properties, and chemical composition of the branchwood were studied and compared with stemwood to evaluate the potential for papermaking. The branchwood and stemwood showed similar cell arrangement but different tissue proportions and fiber morphology. The branchwood had more than 40% fiber proportion, 90%–97% below 0.9 mm in length, 75%–90% less than 33 in slenderness ratio, and 80% less than 1 in Runkel ratio. The branchwood was as light and soft as stemwood with a density of 0.32–0.36 g/cm3 and a compressive strength of about 30 MPa. The branchwood had 6% water extractives, 66% holocellulose, and 22% lignin for T. amurensis, 58% holocellulose and 30% lignin for T. mandshurica. The results suggest the branchwood is favorable for mechanical chipping, has the potential to obtain high pulp yield and its fibers can be mixed with wide, long and thick fibers from other tree species to produce specific paper products. In contrast, T. mandshurica branchwood may not be suitable for chemical pulping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call