Abstract
Cell-permeable peptides (CPPs) promote the transduction of nonpermissive cells by recombinant adenovirus (rAd) to improve the therapeutic efficacy of rAd. In this study, branched oligomerization of CPPs significantly enhanced the transduction of human mesenchymal stem cells (MSCs) by rAd in a CPP type-independent manner. In particular, tetrameric CPPs increased transduction efficiency at 3000-5000-fold lower concentrations than did monomeric CPPs. Although branched oligomerization of CPPs also increases cytotoxicity, optimal concentrations of tetrameric CPPs required for maximum transduction are at least 300-1000-fold lower than those causing 50% cytotoxicity. Furthermore, although only approximately 60% of MSCs were maximally transduced at 500 muM of monomeric CPPs, >95% of MSCs were transduced with 0.1 muM of tetrameric CPPs. Tetrameric CPPs also significantly increased the formation and net surface charge of CPP/rAd complexes, as well as the binding of rAd to cell membranes at a greater degree than did monomeric CPPs, followed by rapid internalization into MSCs. In a critical-size calvarial defect model, the inclusion of tetrameric CPPs in ex vivo transduction of rAd expressing bone morphogenetic protein 2 into MSCs promoted highly mineralized bone formation. In addition, MSCs that were transduced with rAd expressing brain-derived neurotrophic factor in the presence of tetrameric CPPs improved functional recovery in a spinal cord injury model. These results demonstrated the potential for tetrameric CPPs to provide an innovative tool for MSC-based gene therapy and for in vitro gene delivery to MSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.