Abstract

Rogue waves, i.e. high amplitude fluctuations in random wave fields, have been studied in several contexts, ranging from optics via acoustics to the propagation of ocean waves. Scattering by disorder, like current fields and wind fluctuations in the ocean, as well as nonlinearities in the wave equations provide widely studied mechanisms for their creation. However, the interaction of these mechanisms is largely unexplored. Hence, we study wave propagation under the concurrent influence of geometrical (disorder) and nonlinear focusing in the (current-modified) nonlinear Schrödinger equation. We show how nonlinearity shifts the onset distance of geometrical (disorder) focusing and alters the peak intensities of the fluctuations. We find an intricate interplay of both mechanisms that is reflected in the observation of optimal ratios of nonlinearity and disorder strength for the generation of rogue waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.