Abstract

The results of laboratory measurements on limiting freak waves in the presence of currents are reported. Both dispersive spatial‐temporal focusing and wave‐current interaction are used to generate freak waves in a partial random wave field in the presence of currents. Wave group structure, for example, spectral slope and frequency bandwidth, is found to be critical to the formation and the geometric properties of freak waves. A nondimensional spectral bandwidth is shown to well represent wave group structure and proves to be a good indicator in determining limiting freak wave characteristics. The role of a co‐existing current in the freak wave formation is recognized. Experimental results confirm that a random wave field does not prevent freak wave formation due to dispersive focusing. Strong opposing currents inducing partial wave blocking significantly elevate the limiting steepness and asymmetry of freak waves. At the location where a freak wave occurs, the Fourier spectrum exhibits local energy transfer to high‐frequency waves. The Hilbert‐Huang spectrum, a time‐frequency‐amplitude spectrum, depicts both the temporal and spectral evolution of freak waves. A strong correlation between the magnitude of interwave instantaneous frequency modulation and the freak wave nonlinearity (steepness) is observed. The experimental results provide an explanation to address the occurrence and characteristic of freak waves in consideration of the onset of wave breaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call