Abstract

A series of amino-acid based poly(ester urea)s (PEU) with controlled amounts of branching was synthesized and characterized. The mechanical properties, thermal characteristics and water absorptions varied widely with the extent of branch unit incorporation. Herein, the details of the synthesis of a linear bis(l-phenylalanine)-hexane 1,6-diester monomer, a branch tri-O-benzyl-l-tyrosine-1,1,1-trimethylethane triester monomer and a series of copolymers are described. The extent of branching was varied by adjusting the molar ratio of linear to branched monomer during the interfacial polymerization. The elastic moduli span a range of values (1.0–3.1 GPa) that overlaps with several clinically available degradable polymers. Increasing the amount of branching monomers reduces the molecular entanglement, which results in a decrease in elastic modulus values and an increase in values of elongation at break. The l-phenylalanine-based poly(ester urea)s also exhibited a branch density dependent water uptake ability t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.