Abstract

A multilevel programming problem is an optimization problem that involves multiple decision makers, whose decisions are made in a sequential (or hierarchical) order. If all objective functions and constraints are linear and some decision variables in any level are restricted to take on integral or discrete values, then the problem is called a multilevel mixed integer linear programming problem (ML-MILP). Such problems are known to have disconnected feasible regions (called inducible regions), making the task of constructing an optimal solution challenging. Therefore, existing solution approaches are limited to some strict assumptions in the model formulations and lack universality. This paper presents a branch-and-cut (B&C) algorithm for the global solution of such problems with any finite number of hierarchical levels, and containing both continuous and discrete variables at each level of the decision-making hierarchy. Finite convergence of the proposed algorithm to a global solution is established. Numerical examples are used to illustrate the detailed procedure and to demonstrate the performance of the algorithm. Additionally, the computational performance of the proposed method is studied by comparing it with existing method through some selected numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.