Abstract

In this paper, we present a new modified method for solving multi-level multi objective linear fractional programming problems (ML-MOLFPPs) based on fuzzy goal programming (FGP) approach with some modifications in the algorithm suggested by Baky (2010) [18] which dealt with multi-level multi objective linear programming problem (ML-MOLPP). In proposed modified approach, numerator and denominator function of each objective at each level are individually transformed into fuzzy goals and their aspiration levels are determined using individual best solutions. Different linear membership functions are defined for numerator and denominator function of each objective function. Then highest degree of each of these membership goals is achieved by minimising the sum of negative deviational variables. The proposed algorithm simplifies the ML-MOLFPP by eliminating solution preferences by the decision makers at each level, thereby avoiding difficulties associate with multi-level programming problems and decision deadlock situations. The aim of this paper is to present simple and efficient technique to obtain compromise optimal solution of ML-MOLFP problems. Numerical examples are illustrated in order to support the proposed modified FGP technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.