Abstract

Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine). We combine human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items in a "local-global" paradigm that distinguishes between deviance based on the stimulus probability and the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the detection of task-relevant deviant items recruits the same multiple subcortical systems across computationally different types of deviance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call