Abstract

Electrophysiological markers of chunking of words during encoding have mostly been shown in studies that present pairs of related stimuli. In these cases it is difficult to disentangle cognitive processes that reflect distinctiveness (i.e., conspicuous items because they are related), perceived association between related items and unified representations of various items, or chunking. Here, we propose a paradigm that enables the determination of a separate Event-related Potential (ERP) marker of these cognitive processes using sequentially related word triads. Twenty-three young healthy individuals viewed 80 15-word lists composed of unrelated items except for the three words in the middle serial positions (triads), which could be either unrelated (control list), related perceptually, phonetically or semantically. ERP amplitudes were measured at encoding of each one of the words in the triads. We analyzed two latency intervals (350–400 and 400–800 ms) at midline locations. Behaviorally, we observed a progressive facilitation in the immediate free recall of the words in the triads depending on the relations between their items (control < perceptual < phonetic < semantic), but only semantically related items were recalled as chunks. P300-like deflections were observed for perceptually deviant stimuli. A reduction of amplitude of a component akin to the N400 was found for words that were phonetically and semantically associated with prior items and therefore were not associated to chunking. Positive slow wave (PSW) amplitudes increased as successive phonetically and semantically related items were presented, but they were observed earlier and were more prominent at Fz for semantic associates. PSWs at Fz and Cz also correlated with recall of semantic word chunks. This confirms prior claims that PSWs at Fz are potential markers of chunking which, in the proposed paradigm, were modulated differently from the detection of deviant stimuli and of relations between stimuli.

Highlights

  • An important issue in memory research concerns the nature of encoding processes that make memory traces more accessible

  • Considering that immediate free recall of lists with more than 4 words can involve the use of working memory and long-term memory, we focused on the immediate free recall of the middle items (7th, 8th and 9th serial positions) in the list because they reflect the ability to store new information in long-term memory, regardless of the anchoring and rehearsal processes involved in primacy and recency

  • Because “real” chunking was only observed for the semantic triads, we investigate the relation between three-word chunks and amplitude of the Positive slow wave (PSW) at the three electrodes separately, using common regression models

Read more

Summary

Introduction

An important issue in memory research concerns the nature of encoding processes that make memory traces more accessible. Called binding, clustering, or grouping of information, reflects a compacted, optimized unitized representation of stimuli based on their abstract regularities and mnemonic redundancies and is known to lead to better recall (see Bor and Seth, 2012; Jaswal, 2012; Mathy and Feldman, 2012). This paradigm was designed to show that chunking can be dissociated from other cognitive processes that occur during encoding and that are related to recall: distinctiveness and the detection of associations between items. During the encoding phase of this model, items that stand out (distinctiveness) lead to the formation or restructuring/updating of their memory traces and this can lead to better recall (Otten and Donchin, 2000; Kelly and Nairne, 2001; Hunt, 2006)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call