Abstract

Abstract: A Brain tumor is one aggressive disease. An estimated more than 84,000 people will receive a primary brain tumor diagnosis in 2021 and an estimated 18,600 people will die from a malignant brain tumor (brain cancer) in 2021.[8] The best technique to detect brain tumors is by using Magnetic Resonance Imaging (MRI). More than any other cancer, brain tumors can have lasting and life-altering physical, cognitive, and psychological impacts on a patient’s life and hence faster diagnosis and best treatment plan should be devised to improve the life expectancy and well-being of these patients. Neural networks have shown colossal accuracy in image classification and segmentation problems. In this paper, we propose comparative studies of various deep learning models based on different types of Neural Networks(ANN, CNN, TL) to firstly identify brain tumors and then classify them into Benign Tumor, Malignant Tumor or Pituitary Tumor. The data set used holds 3190 images on T1-weighted contrast-enhanced images which were cleaned and augmented. The best ANN model concluded with an accuracy of 78% and the best CNN model consisting of 3 convolution layers had an accuracy of 90%. The VGG16(retrained on the dataset) model surpasses other ANN, CNN, TL models for multi-class tumor classification. This proposed network achieves significantly better performance with a validation accuracy of 94% and an F1-Score of 91. Keywords: Artificial Neural Network(ANN), Convolution Neural Network (CNN), Transfer Learning(TL), Magnetic Resonance Imaging(MRI.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.