Abstract

Synchronization plays a fundamental role in healthy cognitive and motor function. However, how synchronization depends on the interplay between local dynamics, coupling and topology and how prone to synchronization a network is, given its topological organization, are still poorly understood issues. To investigate the synchronizability of both anatomical and functional brain networks various studies resorted to the Master Stability Function (MSF) formalism, an elegant tool which allows analysing the stability of synchronous states in a dynamical system consisting of many coupled oscillators. Here, we argue that brain dynamics does not fulfil the formal criteria under which synchronizability is usually quantified and, perhaps more importantly, this measure refers to a global dynamical condition that never holds in the brain (not even in the most pathological conditions), and therefore no neurophysiological conclusions should be drawn based on it. We discuss the meaning of synchronizability and its applicability to neuroscience and propose alternative ways to quantify brain networks synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.