Abstract

The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.

Highlights

  • Current large-scale initiatives are attempting to construct a map of the structural and functional network connections in the brain [1, 2]

  • We show that inter-node directionality arises

  • Emerging empirical data and computational models suggest that the relative location of neuronal populations in large-scale brain networks might shape the neural dynamics and the directional interactions between nodes, which implies a significant influence of global topology on local dynamics and information flow [16,17,18,19,20,21]

Read more

Summary

Introduction

Current large-scale initiatives are attempting to construct a map of the structural and functional network connections in the brain [1, 2]. Emerging empirical data and computational models suggest that the relative location of neuronal populations in large-scale brain networks might shape the neural dynamics and the directional interactions between nodes, which implies a significant influence of global topology on local dynamics and information flow [16,17,18,19,20,21]. Stam et al showed in a model that the phase lead/lag relationship between local node dynamics is correlated with the degree of the node [19] These past studies all describe special cases without analytical or direct empirical support; a general mechanism that links global network topology, local node dynamics and information flow has yet to be identified

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.