Abstract
Real-world optimization problems often have multiple optimal solutions and simultaneously finding these optimal solutions is beneficial yet challenging. Brain storm optimization (BSO) is a relatively new paradigm of swarm intelligence algorithm that has been shown to be effective in solving global optimization problems, but it has not been fully exploited for multimodal optimization problems. A simple control strategy for the step size parameter in BSO cannot meet the need of optima finding task in multimodal landscapes and can possibly be refined and optimized. In this paper, we propose an adaptive BSO (ABSO) algorithm that adaptively adjusts the step size parameter according to the quality of newly created solutions. Extensive experiments are conducted on a set of multimodal optimization problems to evaluate the performance of ABSO and the experimental results show that ABSO outperforms existing BSO algorithms and some recently developed algorithms. BSO has great potential in multimodal optimization and is expected to be useful for solving real-world optimization problems that have multiple optimal solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.