Abstract
Central post-stroke pain (CPSP) is a debilitating, severe disorder affecting patient quality of life. Since CPSP is refractory to medication, various treatment modalities have been tried with marginal results. Following the first report of epidural motor cortex (M1) stimulation (MCS) for CPSP, many researchers have investigated the mechanisms of electrical stimulation of the M1. CPSP is currently considered to be a maladapted network reorganization problem following stroke, and recent studies have revealed that the activities of the impaired hemisphere after stroke may be inhibited by the contralesional hemisphere. Even though this interhemispheric inhibition (IHI) theory was originally proposed to explain the motor recovery process in stroke patients, we considered that IHI may also contribute to the CPSP mechanism. Based on the IHI theory and the fact that electrical stimulation of the M1 suppresses CPSP, we hypothesized that the inhibitory signals from the contralesional hemisphere may suppress the activities of the M1 in the ipsilesional hemisphere, and therefore pain suppression mechanisms may be malfunctioning in CPSP patients. In this context, transcranial direct current stimulation (tDCS) was considered to be a reasonable procedure to address the interhemispheric imbalance, as the bilateral M1 can be simultaneously stimulated using an anode (excitatory) and cathode (inhibitory). In this article, we review the potential mechanisms and propose a new model of CPSP. We also report two cases where CPSP was addressed with tDCS, discuss the potential roles of tDCS in the treatment of CPSP, and make recommendations for future studies.
Highlights
Stroke is a vascular disorder of the brain causing various symptoms including motor weakness, sensory disturbances, balance problems, and spasticity
central post-stroke pain (CPSP) is currently considered to be a maladapted network reorganization problem following stroke, and recent studies have revealed that the activities of the impaired hemisphere after stroke may be inhibited by the contralesional hemisphere. Even though this interhemispheric inhibition (IHI) theory was originally proposed to explain the motor recovery process in stroke patients, we considered that IHI may contribute to the CPSP mechanism
We report two cases where CPSP was addressed with transcranial direct current stimulation (tDCS), discuss the potential roles of tDCS in the treatment of CPSP, and make recommendations for future studies
Summary
Stroke is a vascular disorder of the brain causing various symptoms including motor weakness, sensory disturbances, balance problems, and spasticity. Pain after stroke can be caused by various conditions secondary to spasticity, and a recent study reported that as many as 39.0% of stroke patients experienced new-onset chronic pain after stroke (Klit et al, 2011). Central post-stroke pain (CPSP) is an especially debilitating, severe disorder characterized by intractable pain with abnormal sensations such as burning and allodynia, which severely affect the quality of life (QOL)
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have