Abstract

Working memory (WM) studies have been essential for ascertaining how the brain flexibly handles mentally represented information in the absence of sensory stimulation. Most studies on the memory of sensory stimulus features have focused, however, on the visual domain. Here, we report a human WM study in the tactile modality where participants had to memorize the spatial layout of patterned Braille-like stimuli presented to the index finger. We used a whole-brain searchlight approach in combination with multi-voxel pattern analysis (MVPA) to investigate tactile WM representations without a priori assumptions about which brain regions code tactospatial information. Our analysis revealed that posterior and parietal cortices, as well as premotor regions, retained information across the twelve-second delay phase. Interestingly, parts of this brain network were previously shown to also contain information of visuospatial WM. Also, by specifically testing somatosensory regions for WM representations, we observed content-specific activation patterns in primary somatosensory cortex (SI). Our findings demonstrate that tactile WM depends on a distributed network of brain regions in analogy to the representation of visuospatial information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.