Abstract

Predicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of prediction error responses originating from the inferior frontal gyrus, superior and middle temporal cortices in heterozygous genotype carriers (Val/Met) vs homozygous (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study shows how the neural mechanisms underlying optimal deviant detection vary according to the gene-determined cathecolamine levels in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.