Abstract

ABSTRACTDenoizing of magnetic resonance (MR) brain images has been focus of numerous studies in the past. The performance of subsequent stages of image processing, in automated image analysis, is substantially improved by explicit consideration of noise. Nonlocal means (NLM) is a popular denoizing method which exploits usual redundancy present in an image to restore noise free image. It computes restored value of a pixel as weighted average of candidate pixels in a search window. In this article, we propose an improved version of the NLM algorithm which is modified in two ways. First, a robust threshold criterion is introduced, which helps selecting suitable pixels for participation in the restoration process. Second, the search window size is made adaptive using a window adaptation test based on the proposed threshold criterion. The modified NLM algorithm is named as improved adaptive nonlocal means (IANLM). An alternate implementation of IANLM is also proposed which exploits the image smoothness property to yield better denoizing performance. The computational burden is reduced significantly due to proposed modifications. Experiments are performed on simulated and real brain MR images at various noise levels. Results indicate that the proposed algorithm produces not only better denoizing results (quantitatively and qualitatively), but is also computationally more efficient. Moreover, the proposed technique is incorporated in an already proposed segmentation framework to check its validity in the practical scenario of segmentation. Improved segmentation results (quantitative and qualitative) verify the practical usefulness of the proposed algorithm in real world medical applications. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 235–248, 2013

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.