Abstract

ObjectiveThe nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls.MethodsWe included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task.ResultsComparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well.ConclusionBrain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.

Highlights

  • Stroke is a leading cause of disability in western society [1]

  • The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function

  • The European Registers of Stroke study (EROS) show that of 2000 patients with first-ever strokes, 40% had a poor outcome in terms of a Barthel Index (BI) below 12 points at 3 months post stroke [2]

Read more

Summary

Introduction

The European Registers of Stroke study (EROS) show that of 2000 patients with first-ever strokes, 40% had a poor outcome in terms of a Barthel Index (BI) below 12 points at 3 months post stroke [2]. Two independent studies have shown that an early return of some shoulder abduction and finger extension within 72 hours post stroke is highly predictive for outcome of upper limb function [6,7,8]. The patients’ ability to extend the paretic fingers voluntary is seen as an early sign of some intactness of corticospinal tract system (CST) after stroke [7,9]. In rehabilitation medicine voluntary control of finger extension is judged as a key function for achieving of some dexterity with the paretic limb [6,8,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call