Abstract

BackgroundDepression is a global mental disorder, and traditional diagnostic methods mainly rely on scales and subjective evaluations by doctors, which cannot effectively identify symptoms and even carry the risk of misdiagnosis. Brain-Computer Interfaces inspired deep learning-assisted diagnosis based on physiological signals holds promise for improving traditional methods lacking physiological basis and leads next generation neuro-technologies. However, traditional deep learning methods rely on immense computational power and mostly involve end-to-end network learning. These learning methods also lack physiological interpretability, limiting their clinical application in assisted diagnosis. MethodologyA brain-like learning model for diagnosing depression using electroencephalogram (EEG) is proposed. The study collects EEG data using 128-channel electrodes, producing a 128×128 brain adjacency matrix. Given the assumption of undirected connectivity, the upper half of the 128×128 matrix is chosen in order to minimise the input parameter size, producing 8,128-dimensional data. After eliminating 28 components derived from irrelevant or reference electrodes, a 90×90 matrix is produced, which can be used as an input for a single-channel brain-computer interface image. ResultAt the functional level, a spiking neural network is constructed to classify individuals with depression and healthy individuals, achieving an accuracy exceeding 97.5 %. Comparison with existing methodsCompared to deep convolutional methods, the spiking method reduces energy consumption. ConclusionAt the structural level, complex networks are utilized to establish spatial topology of brain connections and analyse their graph features, identifying potential abnormal brain functional connections in individuals with depression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.