Abstract

The predominantly non-Antarctic family Bovichtidae is phyletically basal within the perciform suborder Notothenioidei, the dominant component of the Antarctic fish fauna. In this article we focus on the South Atlantic bovichtids Bovichtus diacanthus, the klipfish from tide pools at Tristan da Cunha, and Cottoperca gobio, the frogmouth from the Patagonian shelf and Falkland Islands. We document the anatomy and histology of the brains, olfactory apparatus, retina, and cephalic lateral line system. We also use the microvascular casting agent Microfil to examine ocular vascular structures. We provide detailed drawings of the brains and cranial nerves of both species. Typical of perciforms, the brains of both species have a well-developed tectum and telencephalon and robust thalamic nuclei. The telencephalon of C. gobio is prominently lobed, with the dorsomedial nucleus more conspicuous than in any other notothenioid. The corpus cerebelli is relatively small and upright and, unlike other notothenioids, has prominent transverse sulci on the dorsal and caudal surfaces. Areas for lateral line mechanoreception (eminentia granularis and crista cerebellaris) are also conspicuous but olfactory, gustatory, and somatosensory areas are less prominent. The anterior lateral line nerve complex is larger than the posterior lateral line nerve in B. diacanthus, and in their cephalic lateral line systems both species possess branched membranous tubules (which do not contain neuromasts) with small pores. These are especially complex in B. diacanthus where they become increasingly branched and more highly pored in progressively larger specimens. Superficial neuromasts are sparse. Both species have duplex (cone and rod) retinae that are 1.25-fold thicker and have nearly 5-fold more photoreceptors and than those of most Antarctic notothenioids. Convergence ratios are also high for bovichtids. Bovichtus diacanthus has a yellow intraocular filter in the dorsal aspect of the cornea. Both species are unique among notothenioids in possessing all three vascular structures present in the generalized teleostean eye: the choroid rete mirabile, the lentiform body (also a rete), and the falciform process. When comparing the phyletically derived Antarctic clade exemplified by the families Artedidraconidae, Bathydraconidae, and Channichthyidae to the phyletically basal bovichtids, we observe phyletic regression and reduction in some regions of the brain and in some sensory modalities that are well displayed in bovichtids. In the phyletically derived families the brain is less cellular and nuclei are smaller and less prominent. In some species reduction in the size of the telencephalon, tectum, and corpus cerebelli imparts a "stalked" appearance to the brain with the neural axis visible between the reduced lobes. There is also a phyletic reduction in the number of ocular vascular structures from three in bovichtids to one or none in artedidraconids, bathydraconids, and channichthyids. There are no morphological features of bovichtid brains and sense organs that presage the divergence of the phyletically derived members of the clade in the Antarctic marine environment with its cold and deep continental shelves. We conclude that this environment does not require sensory or neural morphology or capabilities beyond those provided by the basic perciform body plan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call