Abstract

Within a particular animal taxon, larger bodied species generally have larger brains. Increased brain size usually correlates with increased behavioral repertoires and often with superior cognitive abilities. Bumblebees are eusocial insects that show pronounced size polymorphism among workers, whereas in honey bees size variation is much less pronounced. Recent studies suggest that within a given colony, large bumblebee workers are more efficient foragers and are better learners than their smaller sisters. Here we examine the allometric relationship between brain and body size of worker bumblebees and honey bees. We find that larger bees have larger brains and that most brain components show a similar size increase as the overall brain. One particular brain structure, the central body, is relatively smaller in large bumblebees compared to small bees. The same is true for the mushroom body lobes, whereas the mushroom body calyces, which receive sensory input, are not reduced in larger bumblebees or honey bees. Honey bees have relatively smaller brains, as well as smaller mushroom bodies, than bumblebee workers. We discuss why brain or mushroom body size does not necessarily correlate with the degree of a species’ social organization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.