Abstract

Social Hymenoptera are important models for analyzing functional brain plasticity. These insects provide the opportunity to learn how individuals' social roles are related to flexible investment in different brain regions. We assessed how age, sex, and individual behavior influence brain development in a primitively eusocial paper wasp, Mischocyttarus mastigophorus. Previous research in other species has demonstrated experience-dependent changes in central and primary sensory centers in the brain. The mushroom body (MB) calyx is a central processing region involved in sensory integration, learning and memory and may be particularly relevant to social behavior. We extend earlier cross-sectional studies of female brain/behavior associations by measuring sex- and age-related differences in MB calyx volume, and by quantifying optic lobe and antennal lobe development. Age did predict MB development: calyx neuropils increased in volume with age. We show that MB development differs between the sexes. Males, who frequently depart to seek mating opportunities, have larger MB calyx collars (which receive optic input) than females. In contrast, females have augmented predominantly antenna-innervated MB calyx lips, which may be useful for nestmate recognition and interactions on the nest. Sex differences in MB development increased with age. After accounting for age and sex effects, social aggression was positively correlated with MB calyx volume for both sexes. We found little evidence for relationships among sex, age, or behavior and the volumes of peripheral sensory processing structures. We discuss the implications of gender- and age-related effects on brain volume in relation to male and female life history and reproductive success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call