Abstract

Studies have shown that neural responses following concentric (CON) and eccentric (ECC) muscle contractions are different, which suggests differences in motor control associated with CON and ECC contractions. This study aims to determine brain activation of the left primary motor cortex (M1) and left and right dorsolateral prefrontal cortices (DLPFCs) during ECC and CON of the right bicep brachii (BB) muscle at low- and high-contraction intensities. Eighteen young adults (13M/5F, 21-35 years) were recruited to participate in one familiarization and two testing sessions in a randomized crossover design. During each testing session, participants performed either ECC or CON contractions of the BB (3 sets × 8 reps) at low- (25% of maximum ECC/CON, 45°/s) and high-intensity (75% of maximum ECC/CON, 45°/s) on an isokinetic dynamometer. Eleven-channel functional near-infrared spectroscopy was used to measure changes in oxyhemoglobin (O2 Hb) from the left M1, and left and right DLPFC during ECC and CON contractions. Maximum torque for ECC was higher than CON (43.3 ± 14.1 vs. 46.2 ± 15.7 N m, p = 0.025); however, no differences in O2 Hb were observed between contraction types at low or high intensities in measured brain regions. High-intensity ECC and CON contractions resulted in greater increases in O2 Hb of M1 and bilateral DLPFC compared to low-intensity ECC and CON contractions (p = 0.014). Our findings suggest no differences in O2 Hb responses between contraction types at high and low intensities. High-contraction intensities resulted in greater brain activation of the M1 and bilateral DLPFC, which may have implications for neurorehabilitation to increase central adaptations from exercise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.