Abstract
In the present paper we prove decomposition formulae for the braided symmetric powers of simple Uq(sl2)-modules, natural quantum analogues of the classical symmetric powers of a module over a complex semisimple Lie algebra. We show that their point modules form natural non-commutative curves and surfaces and conjecture that braided symmetric algebras give rise to an interesting non-commutative geometry, which can be viewed as a flat deformation of the geometry associated to their classical limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.