Abstract
It has been seen elsewhere how elementary topology may be used to construct representations of the Iwahori-Hecke algebra associated with two-row Young diagrams, and how these constructions are related to the production of the same representations from the monodromy of n-point correlation functions in the work of Tsuchiya & Kanie and to the construction of the one-variable Jones polynomial. This paper investigates the extension of these results to representations associated with arbitrary multi-row Young diagrams and a functorial description of the two-variable Jones polynomial of links in S3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have