Abstract

A fiber-optic sensing scheme for the simultaneous measurement of strain and a wide range of temperatures has been investigated by combining the properties of the fiber Bragg grating (FBG) and the fluorescence from a rare-earth-doped photosensitive fiber. The temperature-dependent fluorescence peak power ratio of the two peaks occurring around 1535 nm and 1552 nm from the amplified spontaneous emission due to the I13/24↔4I15/2 transitions in Er3+-doped tin–germanosilicate fiber, with 980 nm pumping, and the dual functionality of the FBG were exploited in this scheme. The sensor is based on a single FBG written in a small length (∼10 cm) of the above fiber, which can be used for the simultaneous measurement of strain and temperature over ranges of 0–1150 με and 22–500 °C, with root-mean-square errors of 36 με and 6 °C, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.