Abstract
We consider the problem of finding an inductive construction, based on vertex splitting, of triangulated spheres with a fixed number of additional edges (braces). We show that for any positive integer b there is such an inductive construction of triangulations with b braces, having finitely many base graphs. In particular we establish a bound for the maximum size of a base graph with b braces that is linear in b. In the case that b=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$b=1$$\\end{document} or 2 we determine the list of base graphs explicitly. Using these results we show that doubly braced triangulations are (generically) minimally rigid in two distinct geometric contexts arising from a hypercylinder in R4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^4$$\\end{document} and a class of mixed norms on R3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^3$$\\end{document}.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have