Abstract

This paper deals with a new and improved approach of Back-propagation learning neural network based likelihood ratio score fusion technique for audio-visual speaker Identification in various noisy environments. Different signal preprocessing and noise removing techniques have been used to process the speech utterance and LPC, LPCC, RCC, MFCC, ΔMFCC and ΔΔMFCC methods have been applied to extract the features from the audio signal. Active Shape Model has been used to extract the appearance and shape based facial features. To enhance the performance of the proposed system, appearance and shape based facial features are concatenated and Principal Component Analysis method has been used to reduce the dimension of the facial feature vector. The audio and visual feature vectors are then fed to Hidden Markov Model separately to find out the log-likelihood of each modality. The reliability of each modality has been calculated using reliability measurement method. Finally, these integrated likelihood ratios are fed to Back-propagation learning neural network algorithm to discover the final speaker identification result. For measuring the performance of the proposed system, three different databases, that is, NOIZEUS speech database, ORL face database and VALID audio-visual multimodal database have been used for audio-only, visual-only, and audio-visual speaker identification. To identify the accuracy of the proposed system with existing techniques under various noisy environment, different types of artificial noise have been added at various rates with audio and visual signal and performance being compared with different variations of audio and visual features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.