Abstract

The Internet of Vehicles (IoV) connects an isolated individual on the road to share information, which can improve traffic efficiency. However, the promotion of information sharing brings the critical security issues of identity authentication, followed by privacy protection issues in the authentication process in the IoV. In this study, we designed a blockchain-based conditional privacy-preserving authentication scheme for the IoV (BPA). Our scheme implements zero-knowledge proof (ZKP) to verify the identities of vehicles, which moves the authentication process down to the Roadside Units (RSUs) and achieves decentralized authentication at the edge nodes. Moreover, blockchain technology is utilized to synchronize a consistent ledger across all RSUs for recording and disseminating vehicle authentication states, which enhances the overall authentication process efficiency. We provide a theoretical analysis asserting that the BPA ensures enhanced security and effectively protects the privacy of all participating vehicles. Experimental evaluations confirm that our scheme outperforms existing solutions in terms of the computational and communication overhead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call