Abstract

A Boussinesq-type wave model is developed in this paper to simulate the interaction of coastal waves with bottom-mounted porous structures. The governing equations are rewritten in the conservative form to facilitate the use of hybrid finite volume (FV) and finite difference (FD) method. Higher-order slope terms are also inserted into the equations to account for rapidly varying bathymetry. The convective flux is approximated using the FV method, while the remaining terms are discretized using the FD method in a uniform rectangle grid system. The time integration is implemented using the third order Runge–Kutta method with an adaptive time step. A single GPU parallel computation is also implemented to save computation costs. The numerical model is validated against a series of experimental datasets, including data acquired in a new laboratory experiment. The predictions are in overall agreement with the measurements, proving that the model is capable of handling wave interaction with porous structures in the coastal region for a wide range of scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.