Abstract

In this paper we propose new bounds on the achievable information rate for discrete-time Gaussian channels with intersymbol interference (ISI) and independent and uniformly distributed (i.u.d.) channel input symbols drawn from finite-order modulation alphabets. Specifically, we are interested in developing new bounds on the achievable rates for sparse channels with long memory. We obtain a lower bound which can be achieved by practical receivers, based on MMSE channel shortening and suboptimal symbol detection for a reduced-state channel. An upper bound is given in the form of a semi-analytical solution derived using basic information theoretic inequalities, by a grouping of the channel taps into several clusters resulting in a newly defined single-input multiple-output (SIMO) channel. We show that the so obtained time-dispersive SIMO channel can be represented by an equivalent single-input single-output (SISO) channel with a significantly shorter channel memory. The reduced computational complexity allows the use of the BCJR algorithm for the newly defined channel. The proposed bounds are illustrated through several sparse channel examples and i.u.d. input symbols, showing that the upper bound significantly outperforms existing bounds. Performance of our lower bound strongly depends on the channel structure, showing best results for minimum-phase and maximum-phase systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.