Abstract

New easy proofs are given of the eigenvalue inequalities obtained by Amir-Moez for a product AB of two positive definite (strictly positive) operators A and B on a finite-dimensional Hilbert space. As a simple consequence of these inequalities, new bounds are established on the eigenvalues of AB which are much sharper than the ones recently given by Sha Hu-yun. The results is then used to make an easy deduction of a lower bound to the lowest eigenvalue of the Jordan product of A and B. The bound thus obtained is at least as good as the one obtained by Alikakos and Bates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.