Abstract

This work presents a parametrized family of distances, namely the Alpha Procrustes distances, on the set of symmetric, positive definite (SPD) matrices. The Alpha Procrustes distances provide a unified formulation encompassing both the Bures-Wasserstein and Log-Euclidean distances between SPD matrices. This formulation is then generalized to the set of positive definite Hilbert-Schmidt operators on a Hilbert space, unifying the infinite-dimensional Bures-Wasserstein and Log-Hilbert-Schmidt distances. The presented formulations are new both in the finite and infinite-dimensional settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.