Abstract

An elastic two-phase composite, with no restriction on the shape of the two phases, has stiffness bounds given by the Reuss and Voigt equations, and a narrower range determined by the Hashin-Shtrikman bounds. Averages are given by the Voigt-Reuss-Hill, Hashin-Shtrikman, Gassmann, Backus and Wyllie equations. To obtain stiffness bounds and averages, we invoke the correspondence principle to compute the solution of the viscoelastic problem from the corresponding elastic solution. Then, seismic velocities and attenuation are established for the above — physical and heuristic — models which account for general geometrical shapes, unlike the Backus average. The approach is relevant to the seismic characterization of solid composites such as hydrocarbon source rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call