Abstract

The beta invariant is related to the Chromatic and Tutte Polynomials and has been studied by Crapo [4], Brylawski [2], Oxley [7] and others. Crapo [4] showed that a matroid with at least two elements is connected if and only if its beta invariant is greater than zero. Brylawski [2] showed that a connected matroid has beta invariant one if and only if M is isomorphic to a serial-parallel network. Oxley [7] characterized all matroids with beta invariant two, three and four. In this paper, we first give a best possible lower bound on the beta invariant of 3-connected matroids, then we characterize all 3-connected matroids attaining the lower bound. We also characterize all binary matroids with beta invariant 5, 6, and 7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.