Abstract
We consider whether minimizers for total variation regularization of linear inverse problems belong to L^infty even if the measured data does not. We present a simple proof of boundedness of the minimizer for fixed regularization parameter, and derive the existence of uniform bounds for sufficiently small noise under a source condition and adequate a priori parameter choices. To show that such a result cannot be expected for every fidelity term and dimension we compute an explicit radial unbounded minimizer, which is accomplished by proving the equivalence of weighted one-dimensional denoising with a generalized taut string problem. Finally, we discuss the possibility of extending such results to related higher-order regularization functionals, obtaining a positive answer for the infimal convolution of first and second order total variation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have